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Supplementary note 1: Testing the robustness of ݄ௐீௌ
ଶ  estimates 

 
The following section extends the analysis performed to ensure the robustness of our 
heritability estimates for height and BMI. We used a set of N=25,465 unrelated samples of 
European ancestry without excess of heterozygosity. Variants were removed using several 
quality filters (genotypes missingness rate, Hardy-Weinberg equilibrium test P value, MAF, 
quality classifier) and grouped into 8 bins according to their MAF (0.0001 ± 0.001, 0.001 ± 
0.01, 0.01 ± 0.1, 0.1 ± 0.5) and individual LD score value (median-based). The phenotypes 
were pre-adjusted for age and standardized to a mean of 0 and a variance of 1 in each sex and 
cohort group. See Online Methods for more details on the dataset and QC performed. 
 
Influence of LD definition on variance estimates 
We observed minor differences in heritability estimates when replicating previous studies 
using only genotypes from SNP mimicking arrays followed by imputation (݄ீାூெଶ ). 
Estimates of ݄ீାூெଶ  for height and BMI were in the range of 0.50-0.56 (SE 0.06-0.07) and 
0.16-0.21 (SE 0.07) respectively (Figure 1). Previous estimates1 were 0.56 (SE 0.02) for 
height and 0.27 (SE 0.02) for BMI, with a set of 44,126 unrelated samples and ~17.6M 
imputed variants on 1000 Genomes panel with no filtering on imputation quality score, a 
segment-based LD definition to define LD bins and no LD pruning on the variants used to 
compute PCs. Moreover, our height variance estimate using segment-based LD definition 
using Axiom array SNPs prior to imputation was at 0.51 (SE 0.04) compared to 0.56 (SE 
0.07) using individual SNP LD score (Supplementary Figure 9). While a difference in 
heritability estimates between LD definition was expected from previous study2, the 
difference between current and prior LD-based estimates for height could be explained by the 
PCs from LD pruned variants capturing better potential population stratification, a different 
imputation panel, a more stringent imputation quality threshold or differences in base 
population heritabilities. Differences in BMI could also be explained by the aforementioned 
reasons and the different LD definitions. 
 
Comparing LD / MAF structure using UK10K data 
We also tested if there was any bias due to a specific LD or MAF structure in the TOPMed 
dataset by using a different sequenced dataset for SNP stratification. We used the UK10K 
dataset3 and analysed the TOPMed data using the MAF and LD stratification from either 
TOPMed or UK10K data. We converted the UK10K WGS data3 to GRCh38 coordinates 
using LiftMap, a wrapper Python script for LiftOver4. There are 3,781 individuals in the 
UK10K dataset. As with TOPMed, we performed a quality control of the genotypes using 
PLINK with the following filtering thresholds: individuals with missingness rate < 0.05 and 
variants with missingness rate < 0.05, Hardy-Weinberg equilibrium test P value <1 × 10í�, or 
minor allele frequency < 0.0001, and retained 3,781 individuals and 42.68M variants. From 
these variants, we selected 20.6M variants in common with those in the TOPMed dataset. 
Using the UK10K genotypes of the 20.6M variants, we defined 4 MAF bins (0.0001 < MAF 
< 0. 001, 0.001 < MAF < 0.01, 0.01 < MAF < 0.1 and 0.1 < MAF<0.5) and further split the 
variants in each MAF bin into 2 LD bins according to their LD scores (calculated using a 
window size of 10Mb in either direction). We also defined 8 MAF- and LD-stratified variant 
bins using the TOPMed genotypes of the 20.6M variants. We estimated and partitioned 
additive genetic variance in the TOPMed based on these 20.6M variants, using either the 
MAF and LD annotation from the UK10K or TOPMed, fitting 160 PCs computed from LD-
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pruned WGS variants. The estimates were highly consistent between the two analyses 
(Supplementary Figure 34). For height, the estimates were 0.54 (SE 0.08) when using the 
TOPMed annotation and 0.55 (SE 0.07) using SNP stratification from the UK10K, and the 
corresponding estimates for BMI were 0.27 (SE 0.07 ± 0.08) in both cases. The similarity 
between the estimates from the two references for MAF and LD stratification suggests that 
our inference from the TOPMed annotation is not biased by using MAF and LD stratification 
from another dataset. 
 
Effect of rank-inverse normal transformation 
We analysed both height and BMI (both adjusted for age and standardized within each sex 
and cohort group) with a rank-based inverse normal transformation (RINT). We used the set 
of N=25,465 unrelated Europeans samples and 33.7M high quality variants. We used 
GREML-LDMS fitting 8 MAF/LD bins and 48 PCs capturing population stratification. The 
estimate for the RINT-transformed phenotypes were similar when compared to those from 
the untransformed trait for height (0.63 (SE 0.09)) but lower for BMI (0.20 (SE 0.10)) 
(Supplementary Figure 6). Since BMI naturally has a skewed distribution (Supplementary 
Figure 4), results may be sensitive to the scale of analysis. Past estimates of heritability from 
pedigree and GWAS designs are not consistent in the scale, with some using the actual scale 
of measurement and other performing a pre-analysis logarithm or RINT transformation of the 
data. We performed analyses on the actual and RINT scale and found that the estimates from 
the RINT-transformed data appeared more sensitive to the model, although the RINT 
estimates seems to be more consistent in analyses considering a reduced number of rare 
variants (such as down-sampling or analysing exome data). These differences could be due to 
sampling variation and would need to be investigated further with a larger sample size. 
 
Influence of SNP quality and GRM estimators 
As a further check, we compared GREML-LDMS estimates by selecting the complete set of 
genotyped variants in place of the high-quality variants identified with a classifier trained 
using a support vector machine algorithm (SVM) and additional hard filters (Online 
Methods). That increased the total number of variants used to compute GRMs from 33.7M to 
44.2M variants. The estimate of ݄ௐீௌ

ଶ  for height was 0.62 when fitting the 20 HM3 PCs and 
0.63 when fitting the 160 PCs. When investigating the differences between these estimates 
and the ones from high quality variants, we noticed some large differences in diagonal and 
off-diagonal values of the low MAF GRMs, potentially due to sequencing errors or batch 
effects in these ultra-rare variants (Supplementary Figure 26, Supplementary Figure 27). We 
therefore concluded that the choice of stringent variant QC was justified. 
 
To quantify the effect of differential SNP weighting within each GRM, we investigated the 
influence of calculating the GRM estimator ܣXVLQJ�WKH�DYHUDJH�UDWLR�RYHU�ORFL��³DYHUDJH�RI�
UDWLR´�5 instead of the ratio of total SNP covariance and total SNP heterozygosity over loci 
�³UDWLR�RI�DYHUDJHV´�6 (Supplementary Figure 28, Supplementary Figure 29) on the GREML-
LDMS estimates (Online Methods, Supplementary Figure 30). Note that the default GCTA 
method (average of ratios) assumes an inverse relationship between MAF and variant effect 
size whereas the ratio of averages assumes no relationship between MAF and variants effect 
sizes. For height and BMI, the average of ratio method showed slightly higher estimates 
(0.63, SE 0.10 for height and 0.29 (SE 0.11) for BMI, respectively) than the ratio of averages 
(0.61 (SE 0.09) and 0.25 (SE 0.10)), accounting for population stratification. These results 
show that our current estimates seem robust to the GRM estimator (see Discussion and the 
Supplementary Note 3 for more discussion), consistent with prior work1. 
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Investigating the influence of direct GRM QC on heritability estimates 
We investigated how outlier values in the rare variants GRMs influence the estimates of 
݄ௐீௌ
ଶ . From the 28,755 unrelated individuals of European ancestry (before filtering 

individuals based on their heterozygosity values in each bin, Supplementary Figure 3, 
Supplementary Figure 31, Supplementary Figure 32), we filtered individuals based either on 
their off-diagonal values (removing pairs > 0.1), diagonal values (< 0.7 and > 1.3), or both 
(Online Methods, Supplementary Table 6, Supplementary Figure 33). For height, removing 
one of each pair of individuals with large off-diagonal values in any of the rare variants 
GRMs did not change the estimates regardless of the number of PCs fitted in the model 
(~0.58 ± 0.71 (SE 0.08)). However, excluding individuals with extremely large diagonal 
values yielded a substantial increase in ݄ௐீௌ

ଶ  estimates (0.71 ± 0.81 (SE 0.09)). Removing 
individuals based on both diagonals and off-diagonals values still showed this large increase 
in heritability estimates (0.71 ± 0.82 (SE 0.09 ± 0.10)). For BMI, filtering samples did not 
increase the estimates but revealed a larger contribution from rare variants in the low-LD 
bins; and a large overall increase was observed compared to estimates from QC based on 
sample heterozygosity. The reasons why excluding individuals with extreme diagonal values 
affects heritability estimates for height and not for BMI are unclear and warrant further 
investigation. Heritability differences between height and BMI may contribute to inflate the 
effect of extreme GRM values, by making them more visible for height. Note that observed 
differences remain within standard errors. We also investigated the influence of a more 
stringent common-variant relatedness threshold of 0.025 (instead of 0.05 used previously), 
but the estimates did not change substantially (Supplementary Table 7). Therefore, extreme 
GRM diagonal values observed in rare variant GRMs seem to have a larger influence on 
estimates than extreme off-diagonal values. 
 
Impact of LD stratification 
Finally, we investigated the influence of LD on GREML-LDMS estimate by increasing the 
number of LD bins. Prior work suggest that 2 LD bins are sufficient to estimate and partition 
genetic variance1. However, when using WGS variants there is substantial variation in LD 
score within a MAF group (Supplementary Figure 35). We therefore investigated whether 
further partitioning according to LD could better capture genetic variance. We divided each 
MAF bin into 3 and 4 LD bins instead of 2, thereby increasing the total number of GRMs 
fitted in the model from 8 to 12 (when dividing each MAF bin into 3 LD tertile groups) or 16 
(when dividing each MAF bin into 4 LD quartile groups). Compared to the ݄ௐீௌ

ଶ  estimates 
based on 2 LD bins, the estimates based on 3 and 4 LD bins were consistently higher, ranging 
between 0.67 ± 0.68 (SE 0.10) for height and 0.28 ± 0.32 (SE 0.10) for BMI (Figure 2), with 
the 48 PCs fitted as fixed covariates. This increase is consistent with larger LD heterogeneity 
within MAF bins, which was not fully accounted for by 2 LD bins. While using 3 LD bins 
substantially increased estimates for both traits, we did not observe such increase when 
increasing the number of LD bins to 4 (Supplementary Figure 36). Comparing the Akaike 
Information Criterion (AIC) between different models, the 4 LD grouping strategy 
consistently performed the best for height and BMI, followed by the 3 LD grouping 
indicating that the 2 LD grouping strategy is not the most appropriate when considering rare 
variants (Supplementary Figure 37). These estimates are also closer to the estimates of ݄ௐீௌ

ଶ  
without outlying diagonal and off-diagonal elements (see above). However, additional 
partitioning comes at the cost of decreased precision of the estimate of heritability. 
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Supplementary note 2: Investigating potential bias of ݄ௐீௌ
ଶ  estimates 

due to localized environmental effects 
 
Simulation parameters 
We investigated potential bias in the heritability estimates due to localized and sharply 
distributed environmental effects correlating with rare variants stratification. Such 
environmental effects have been previously shown to cause a bias in PGS estimated effect, 
which may not be fully corrected for by fitting PCs7,8. We used a simple simulation setting 
with the UKB WES data where we identified groups of samples based either on their 
birthplace administrative regions or visually, based on the correlation between PCs computed 
from rare variants on the odd and even chromosomes (Supplementary Figure 24). We 
selected 971 individuals born near Rotherham (administrative region with the largest sample 
size excluding the main cities in the UK) or 841 individuals born in the North of the UK 
(hereafter denoted the ³1RUWK´�sample; normalized birth coordinates (Online Methods) 
between 0.5 and 0.7 on the North axis and between 0.25 and 0.55 on the East axis) 
(Supplementary Figure 17). 7KH�PHDQ�)VW�EHWZHHQ�WKH�³1RUWK´�VDPSOHV�DQG�WKH�UHVW�RI�WKH�
dataset was of ͳǤͶͷ ൈ ͳͲିସ for common variants (MAF > 0.01) and ͵Ǥ ൈ ͳͲିହfor rare 
variants (MAF < 0.01 and MAC > 3). For the Rotherham samples Fst was of ʹǤͳ ൈ ͳͲିହ for 
common variants and ͳǤͺ ൈ ͳͲିହ for rare variants, indicating a lower level of genetic 
heterogeneity with the rest of the dataset for the Rotherham samples as compared to the 
³1RUWK´�VDPSOHV.  
 
We generated standardized phenotypes from randomly sampling causal variants (either 
10,000 with MAF > 0.01; or 10,000 with MAC 3 < MAF < 0.01; or 5,000 variants from both 
the common and rare variants groups). Each simulation setting was replicated 10 times. To 
simulate a localized environmental effect, we added an effect ߚ א ሼͲǤͷǡ ͳǡ ʹሽ to the 
standardized phenotypes of 5RWKHUKDP�RU�³1RUWK´ samples (accounting for 0.7%, 2.6%, 
10.5% and 0.6%, 2.3%, 9.2% of the total phenotypic variance for Rotherham and North, 
respectively, Supplementary Figure 18). We performed a GREML-LDMS analysis with a 
rare variants GRM (MAC3 < MAF < 0.01) and a common variants GRM (0.01 < MAF < 
0.5). We fitted as fixed effects either 40, 200 or 1000 PCs from LD pruned SNPs (i.e. 20, 100 
or 500 per bin) depending on the experiment. We also investigated whether using a RINT 
transformation could affect the estimates. Finally, we conducted an experiment assigning a 
constant term to N=971 samples selected randomly from the dataset, as a negative control. 
 
Effect of localized environmental effect 
On the phenotypes without any added effect and the negative control (effect added at 
random) we observed a heritability estimate of 0.70, consistent with the simulated trait value 
(Supplementary Figure 19). We observed an inflation coming from the rare-variant GRM 
when a localized effect was added on the North or Rotherham (Supplementary Figure 20, 
Supplementary Figure 21). The magnitude of this effect was greater when all the causal 
variants were common. In some instances, this effect could be partially corrected by applying 
a RINT transformation to correct for the phenotype skewness or by PCs when the populations 
were genetically differentiated from the rest of the samples (³North´ samples). For the 
Rotherham samples, fitting a large number of PCs could not fully account for the 
environmental effect and the estimate of genetic variance was biased. Adding a localized 
effect of 2 standard deviations resulted in a large inflation of the estimates for rare variants 
(~0.10), confirming previous observations7,8. However, these simulations settings do not 
reflect the observed distribution of regional height effects in the UKB. When investigating 
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the mean phenotypic difference per administrative region (Supplementary Figure 18), the 
largest effect we could observe in the whole UKB was of the order of 0.5 standard deviations 
when considering effect size, and 0.2% when considering phenotypic variance explained. The 
simulated value of 2 standard deviations (equivalent to about 14 cm for height) accounting 
for ~10% of the phenotypic variance, while useful to study how much PCs correct for 
localized effects, appears unrealistic when compared to real phenotypes. We then replicated 
the simulations with an effect of 0.5 standard deviations accounting for ~2% of the variance 
(still larger than what was observed in the UKB) and could not find any substantial inflation 
in the estimation of variance explained by the rare variants bin. Moreover, any real regional 
phenotypic differences might also partially reflect genetic effects which could be accounted 
for by fitting a sufficient number of PCs. 
 
Inflation of heritability estimates for whole-genome estimates 
Our simulations confirm a potential inflation of heritability estimates when a localized 
environmental effect affects the phenotype of a small number of individuals and these 
individual share rare variants. When quantifying the magnitude of this effect, there was no 
substantial inflation when simulating an effect corresponding to the highest effect in the UKB 
or TOPMed (the mean differences between cohort within TOPMed have also been corrected 
for in the rest of our analysis). The Fst in between the cohorts sampled for these simulations 
are very low, and a higher Fst between populations could help PCs to account for localized 
effects. These simulations have investigated only one localized effect and might not fully 
reflect all the environmental effects found within a population, such as a combination of 
effects of small magnitude. However, from the distribution of mean phenotypes across 
administrative regions, it does not seem likely that any real regional environmental effects are 
large. From these simulations, our estimates seem broadly robust to localized environmental 
effects. Large datasets of WGS or WES with environmental information could help 
investigate this question in the future. 
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Supplementary note 3: the effect of rare variants population 
stratification on genomic relationship matrices 
 
Here, we describe various analyses aiming at better understanding the impact of rare variants 
stratification on estimates of SNP-based heritability from WGS data. The following notes 
expand in greater details some of the analyses briefly described in the Online Methods 
section. 
 
Extreme values in rare-variants GRMs 
After performing an initial QC to select unrelated adults (of age > 18) samples of European 
ancestry (N=28,755) based on the first 4 PCs for common and rare variants and 1000 
Genomes reference populations9, we performed QC on variants using several filters 
(excluding variants with genotypes missingness rate > 0.05, Hardy-Weinberg equilibrium test 
P value <1 × 10í�, MAF < 0.0001 and high quality variants from a SVM classifier). On the 
36.9M variants left after sample and genotype QC, defined 8 variants bins based on their 
MAF (0.0001 ± 0.001, 0.001 ± 0.01, 0.01 ± 0.1, 0.1 ± 0.5) and individual LD score value 
(median-based). We then computed GRM using these 8 variants groupings. We observed 
extreme diagonal and off-diagonals values in GRMs (Online methods) calculated from 
variants with 0.0001 < MAF < 0.01. Prior to performing any further sample/variant filtering, 
we first investigated the influence of the GRM estimator on these extreme values. We 
compared two GRM estimators implemented in GCTA: the default GRM estimator5, which 
calculate average of per-SNP relatedness estimates; and the VanRaden estimator10, which 
estimates relatedness as the ratio of SNP covariance and SNP heterozygosity. We found 
small differences between the diagonal elements of these two matrices (Supplementary 
Figure 28) and larger differences in off-diagonal elements of the GRM (Supplementary 
Figure 29). The average of ratios estimator shows off-diagonal values consistently higher for 
extreme values. As a whole, we observe, for variants with 0.0001 < MAF < 0.01, high 
relatedness for some pairs (with relatedness values consistent with a first-degree relationship) 
and large GRM diagonal values that are inconsistent with the expected sampling variance of 
rare variants GRMs with a larger number of effective markers1. The GRM estimator alone 
does not explain why a set of unrelated (estimated common variants relatedness < 0.05) 
samples using HM3 common SNPs exhibits very high relatedness from rare variants GRMs. 
 
Influence of IBD segments on relatedness 
The relatedness threshold of 0.05 using HM3 common SNPs, while being widely used in 
previous studies1, might not be sufficient to remove residual relatedness. For example, 
cousins-once-removed have an expected relatedness value of 0.0625 (SD 0.017)11. A 
relatedness threshold of 0.05 could then include such pairs who would share segments IBD as 
shown through simulations in previous studies12. We first selected samples with a more 
stringent threshold on HM3 SNPs of 0.025. That removed an additional 2282 samples. When 
investigating the rare variants GRMs we could still observe extreme values in the diagonals 
(~4) and off-diagonals (~1) elements, despite the more stringent threshold on common 
variants relatedness. 
 
In the absence of sample relatedness for common variants and genome-wide population 
stratification, large values in rare variants GRMs could be driven by shared IBD segments. 
To identify the shared IBD segments, we selected 987,393 LD-pruned variants from the full 
WGS data (window size of 50kb and LD r2 threshold of 0.1) with MAF > 0.01 on N=28,755 
samples and identified pairs shared IBD segments > 1MB on each of the 22 chromosomes 
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with KING 2.2.6 software13. Across all chromosomes, 56.6M segments were shared IBD 
with 3.26M unique pairs sharing one or more segments IBD (Supplementary Figure 38). For 
each pair of individuals (sharing at least 1 segment IBD), we compared the cumulative length 
of IBD segments with its corresponding GRM off-diagonal values. We found that some pairs 
sharing the longest IBD segments accumulatively did not contribute disproportionately to the 
GRM off-diagonal elements for high-LD variants with 0.0001 < MAF < 0.01. We also 
noticed that some pairs had an extreme relatedness value (large off-diagonals), yet did not 
share a large proportion of their genome IBD. These pairs were enriched with individuals 
exhibiting a high level of MAF/LD bin-specific heterozygosity (Supplementary Figure 39). 
These results suggest that high off-diagonal values are caused by high mean heterozygosity 
due to variants that are disproportionally shared but not in long IBD segments. 
 
We confirmed these findings by investigating, for a pair of individuals showing an extreme 
off-diagonal value in the GRM for high-LD variants with 0.0001 < MAF < 0.001, the 
distribution of the heterozygous rare and oppositive homozygous common variants for the 
chromosome enriched for rare variants shared by the pair (Supplementary Figure 40). For this 
specific pair, we identified a region with many clumped rare variants and no oppositive 
homozygotes common variants, suggesting a region shared IBD. 
 
We then defined 3 groups of samples (Supplementary Figure 41) selecting either the first 100 
pairs with the highest off-diagonals (for high-LD variants with 0.0001 < MAF < 0.001), the 
first 100 pairs sharing the longest proportion of their genome IBD, and 100 pairs selected at 
random (within 0.01 SD from the median of IBD length shared and off-diagonal values) as 
control. For each group, we used a global ancestry reference14,15 to infer the genome-wide 
proportion ancestry of the group of samples (Online methods). There was no difference in 
mean ancestry across sample groups for each population with the exception that samples with 
high GRM off-diagonals had a significantly higher proportion of African ancestry, indicating 
that these pairs might be sharing few shorts IBD segments from a different ancestry, thereby 
strongly impacting their relatedness. We further investigated the source of heterozygosity by 
comparing the number of heterozygous variants from either the IBD segments or the entire 
genome, for the very rare high-LD variants (Supplementary Figure 41). The group showing 
high relatedness had a very high number of heterozygotes variants (as expected by their high 
mean heterozygosity rate) with most of these variants on their shared IBD segments. The 
group sharing a higher proportion of genome IBD had a substantially lower number of 
heterozygotes variants. Finally, the control group showed a small number of heterozygous 
variants overall and more spread across the entire genome. 
 
In summary, we show that short IBD segments from a different ancestry have a strong impact 
on the estimated relatedness values for some pairs in the rare variants GRMs. Including a step 
in the QC pipeline to identify and remove such pairs allows the correction for extreme 
relatedness which could bias the variance components estimates. While directly investigating 
the origin of these segments specifically (through segment-based PCA, for example) is 
computationally demanding, we used the sample heterozygosity to identify the pairs sharing 
such segments and remove them. We used multiple rounds of heterozygosity QC to remove 
the extreme samples (Online methods). Shared IBD segments are expected in an outbred 
population16-18, but we tried to control for the large effects it can have when considering very 
rare variants. We performed a GREML-LDMS analysis with the proportion of African 
ancestry fitted as an additional covariate and did not observe a significant change in any of 
the heritability estimates (Supplementary Table 7), because the proportion of African 
ancestry did not fully capture the outlier samples with high diagonal values. 
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Linear regression of phenotype on PCs 
We performed a number of additional analyses to test the robustness of estimates of ݄ௐீௌ

ଶ  to 
population stratification. The standard correction method using PCs may not be effective in 
controlling for local population stratification in spatially structured populations7,8. To 
estimate how much phenotypic variance is explained by PCs, we regressed the phenotype on 
a large number of PCs computed from common and rare variants (Online methods). This 
analysis showed that increasing the number of PCs from 20 (from common variants) to 160 
(common and rare variants) modestly increased the regression R2 from 0.012 to 0.018 for 
height and from 0.001 to 0.004 for BMI (Supplementary Figure 14). These results imply that 
population structure, as quantified by linear regression on PCs from common and rare 
variants, in total may contribute only about 1.5% of phenotypic variance for height and 
nearly none for BMI. However, fitting them as fixed effects in a linear mixed model might 
not affect heritability estimates commensurately (Supplementary Figure 12). 
 
Using birthplace coordinates to capture potential population stratification in the UKB 
We lacked any direct information on spatial substructure in the TOPMed dataset, and 
therefore turned to the UKB where such information is available. We selected a sample of 
35,867 unrelated individuals of European ancestry with both whole-exome sequence (WES) 
data and birthplace coordinates available (Online methods). We investigated how well the 
potential population stratification could be captured by the birth coordinates in the UKB. The 
estimates from a GREML-LDMS analysis fitting 14 MAF/LD bins (i.e., 7 MAF x 2 LD) 
from the WES data and an additional bin of HM3 common SNPs from imputed data were 
0.62 (SE 0.04) for height and 0.33 (SE 0.04) for BMI. When including the birthplace 
coordinates as fixed covariates in the GREML-LDMS analysis, the estimates were essentially 
the same, 0.61 (SE 0.04) for height and 0.33 (SE 0.04) for BMI (Supplementary Figure 15), 
showing either no evidence of a strong effect of local stratification on the GREML estimates 
for rare WES variants in the UKB or that fitting birth coordinates does not fully capture 
population stratification. Estimates between TOPMed and UKB WES datasets were also 
similar when selecting variants present in both datasets after equalising the sample sizes 
(Online methods, Supplementary Figure 16), although we observed UKB WES-based 
estimates were consistently higher, possibly due to a difference in trait heritability across 
TOPMed and UKB samples. 
 
Residual population stratification 
Finally, we further our investigation to the influence of ancestry proportion on the diagonal 
elements of the GRMs. Our analysis is limited to individuals already selected to be from 
European ancestry by a PCA filtering on both common and rare variants then further filtered 
to stay within 3 SD from main reference populations using a global ancestry inference14,15 
(Online methods). When investigating the relationship between the diagonal elements and the 
proportion of each ancestry for each MAF/LD grouping, we could not notice a meaningful 
relationship with the exception of the impact of African ancestry proportion positively 
correlated (ܴଶ ൌ ͲǤͻ) with diagonal values for the high-LD variants with 0.0001 < MAF < 
0.001 (Supplementary Figure 43). The larger genetic diversity for African populations has 
been documented by previous studies9 and is reflected in the diagonal values for rare variants 
GRMs. 
 
The samples in our study have, after QC steps, a maximum of 1.5% of their genome that is 
estimated to be derived from African ancestry. Lowering this threshold would remove a large 
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number of samples. Moreover, the sample identified as having African ancestry IBD 
segments still show an average proportion of African ancestry genome-wide of around 
0.75%, far below our current threshold. Thus, while it is important to consider removing 
sample showing an excess of any ancestry other than the population under study (here, people 
of European ancestry), this criterion alone cannot be used to control for subtle population 
stratification and needs to be used in conjunction with more specific metrics (such as the 
sample MAF/LD bin heterozygosity rate).  
 
Quality control for WGS data 
Much is yet to be learned when using WGS data with very rare variants for genetic analysis. 
While the set of 28,755 unrelated European ancestry samples did not present any specific 
issue when considering only common variants, including very rare variants in our analysis 
necessitated additional QC steps. Ensuring a homogeneous ancestry with PCA and global 
ancestry inference helps removing any cryptic population stratification that could influence 
the diagonals elements of the rare variants GRMs. Moreover, it is important to identify pairs 
sharing short IBD segments coming from a different ancestry and having a large influence on 
GRM elements for rare variants. Removing samples based on their MAF/LD bin-specific 
heterozygosity helps to correct for potentially biased estimates of variance components from 
rare variant GRMs. While this does not fully address the issue of samples showing large 
GRM element values, it is an efficient way to correct for the bias identified while trying to 
maximise the sample size. A WGS dataset from a more homogeneous population might not 
exhibit such patterns among rare variants.  
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Supplementary material 
 
Supplementary Table 1: List of studies included in the analysis with corresponding sample sizes comprised of participants 
with both genotypic and phenotypic information available before quality control, along with their TOPMed accession 
number. 

Study name and code Sample 
size 

TOPMed accession 

Genetics of Cardiometabolic Health in the Amish 
(Amish) 1111 phs000956.v3.p1.c999 

Atherosclerosis Risk in Communities (ARIC) 8128 phs001211.v1.p1.c999 

Mount Sinai BioMe Biobank (BioMe) 11193 
phs001644.v1.p1.c999 

Coronary Artery Risk Development in Young Adults 
(CARDIA) 3087 

phs001612.v1.p1.c999 

Cleveland Clinic Atrial Fibrillation (CCAF) Study 363 
phs001189.v1.p1.c999 

Cleveland Family Study (CFS) 1259 phs000954.v2.p1.c999 
Cardiovascular Health Study (CHS) 3537 phs001368.v1.p1.c999 
Genetic Epidemiology of COPD (COPDGene) 10283 phs000951.v2.p2.c999 
The Framingham Heart Study (FHS) 4166 phs000974.v3.p2.c999 
Genetic Studies of Atherosclerosis Risk (GeneSTAR) 1763 phs001218.v1.p1.c999 
Genetics of Lipid Lowering Drugs and Diet Network 
(GOLDN) 945 phs001359.v1.p1.c999 

Heart and Vascular Health Study (HVH) 693 phs000993.v2.p2.c999 
Whole Genome Sequencing of Venous 
Thromboembolism (Mayo_VTE) 1345 phs001402.v1.p1.c999 

Multi-Ethnic Study of Atherosclerosis (MESA) 5351 phs001416.v1.p1.c999 
Massachusetts General Hospital Atrial Fibrillation 
(MGH_AF) 989 phs001062.v3.p2.c999 

Partners Healthcare Biorepository (Partners) 128 phs001024.v1.p1.c999 
The Vanderbilt AF Ablation Registry (VAFAR) 173 phs000997.v3.p2.c999 
The Vanderbilt Atrial Fibrillation Registry (VU_AF) 1128 phs001032.v3.p2.c999 
Women¶s Genome Health Study (WGHS) 117 phs001040.v3.p1.c999 
:RPHQ¶V�+HDOWK�,QLWLDWLYH��:+,� 11031 phs001237.v1.p1.c999 
Total 66790  
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Supplementary Table 2: Additional cohort specific information on age, height, BMI, total sample size and proportion of 
male/females in the study after QC. 

Study code 
Age Height BMI Sample 

size 

Sex 
proportion 

Mean SD Mean SD Mean SD M F 
ARIC 54.0 5.7 169.0 9.6 26.7 4.7 4219 0.45 0.55 
BioMe 56.0 14.2 172.7 10.2 27.0 6.1 965 0.52 0.48 

CARDIA 25.9 3.1 171.6 9.2 23.6 4.0 1093 0.45 0.55 
CCAF 54.5 9.1 179.9 9.7 30.4 6.1 254 0.79 0.21 
CFS 46.9 13.1 169.8 9.7 31.5 7.4 139 0.47 0.53 
CHS 72.7 5.4 165.6 9.5 26.3 4.3 1668 0.42 0.58 

COPDGene 62.2 8.8 170.0 9.5 28.7 6.2 4887 0.52 0.48 
FHS 39.7 10.9 169.2 9.3 25.4 4.4 939 0.46 0.54 

GeneSTAR 47.2 12.0 170.5 10.2 28.5 6.7 217 0.42 0.58 
HVH 62.5 12.0 175.1 10.2 31.8 7.7 515 0.66 0.34 

Mayo_VTE 56.3 16.4 171.7 10.7 31.0 7.6 1030 0.49 0.51 
MESA 61.4 9.8 170.1 9.6 27.9 5.1 1128 0.48 0.52 

MGH_AF 54.7 10.1 179.3 9.9 28.4 5.4 631 0.80 0.20 
Partners 51.1 7.4 175.7 10.4 31.3 7.0 68 0.66 0.34 
VAFAR 58.4 8.3 177.5 10.8 32.8 6.9 118 0.67 0.33 
VU_AF 53.7 10.7 178.0 10.1 31.2 6.8 750 0.74 0.26 
WGHS 49.5 3.4 167.8 6.1 28.4 6.3 86 0.00 1.00 
WHI 67.3 6.5 161.9 6.0 28.3 5.8 6758 0.00 1.00 
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Supplementary Table 3: Number of SNPs on each of the Illumina HumanCore24, GSA 24 and Affymetrix Axiom arrays before 
merging with TOPMed dataset (probes), after merging and after preparing the files for imputation. 

Array name Number of probes 
on the array 

Number of SNPs 
after merging with 

TOPMed 

Final number of 
SNPs after 

preparing files for 
imputation 

Affymetrix Axiom 784,849 742,749 735,920 
Illumina HumanCore24 263,947 257,901 257,392 

Illumina GSA 648,327 523,370 520,235 
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Supplementary Table 4: Imputation statistics after imputing SNPs on Illumina InfiniumCore24, GSA 24 and Affymetrix Axiom 
arrays using the HRC reference panel on Sanger imputation servers, with SNP number with imputation info score above 0.3 
after QC. 

Array Imputation info scores 
Number of SNPs with r2 > 0.3 after QC Min. Median Mean Max. 

Axiom 0.3 0.829 0.782 1 20,393,950 
Infinium 0.3 0. 750 0. 727 1 18,993,608 

GSA 0.3 0.791 0.755 1 19,822,722 
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Supplementary Table 5: Number of variants and LD properties (based on individual variant LD score) of each of the four 
groupings of the TOPMed dataset according to the allele frequency of the variant. The number of SNPs decrease as the MAF 
increases as rare variants makes up for most of the variants in the dataset. 

MAF bin Number of 
SNPs 

LD score properties 

Mean Median SD 

0.0001 ± 0.001 19,583,648 27.1 13.6 46.3 

0.001 ± 0.01 5,283,043 40.7 22.5 76.7 

0.01 ± 0.1 3,935,389 122.6 71.5 260.8 
0.1 ± 0.5 4,902,760 193.6 136.3 241.7 
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Supplementary Table 6: Values of mean GRM diagonals +/- 3 standard deviations before and after sample heterozygosity 
QC for each MAF/LD bin. 

MAF bin LD bin 

Sample size 
28,755 (no HET QC) 25,465 (HET QC) 
Mean ± 

3*sd 
Mean + 

3*sd 
Mean ± 

3*sd 
Mean + 

3*sd 

0.0001 ± 0.001 
Low 0.85 1.17 0.87 1.14 
High 0.21 1.81 0.54 1.45 

0.001 ± 0.01 
Low 0.95 1.05 0.96 1.05 
High 0.85 1.16 0.87 1.13 

0.01 ± 0.1 
Low 0.97 1.03 0.97 1.03 
High 0.92 1.09 0.92 1.08 

0.1 ± 0.5 
Low 0.98 1.02 0.98 1.02 
High 0.96 1.04 0.96 1.03 
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Supplementary Table 7: Summary of the estimates of heritability for height and BMI from all main analyses performed. 

Dataset Experiment info SNPs Sample 
size 

GRM 
Algorithm 

N MAF 
bins 

N LD 
bins 

Random effects 
(GRMs) 

Fixed effects 
(PCs) 

Estimates 

Height BMI 

TOPMed GREML-SC (HM3 SNPs) SVM 
HM3 

25465 Alg1 1 1  20 0.48 
(0.02) 

0.24 
(0.02) 

GREML-MS (WGS SNPs) High 
quality 
SVM 
WGS 
SNPs 

4 1 4 20 HM3 SNPs 0.48 
(0.05) 

0.24 
(0.05) 

4 1 4 160 WGS 0.45 
(0.05) 

0.23 
(0.05) 

GREML-LDMS (WGS SNPs) (median based) 4 2 8 20 HM3 0.70 
(0.09) 

0.29 
(0.09) 

4 2 8 48 WGS 0.61 
(0.09) 

0.25 
(0.10) 

4 2 8 160 WGS 0.60 
(0.09) 

0.23 
(0.10) 

GREML-LDMS ± WGS SNPs ± 3 LD bins (tertile 
based) 

4 3 12 20 HM3 0.78 
(0.09) 

0.31 
(0.10) 

4 3 12 48 WGS 0.68 
(0.09) 

0.32 
(0.10) 

4 3 12 160 WGS 0.68 
(0.10) 

0.30 
(0.10) 

GREML-LDMS ± WGS SNPs ± 4 LD bins (quantile 
based) 

4 4 16 48 WGS 0.68 
(0.10) 

0.30 
(0.10) 

4 4 16 160 WGS 0.67 
(0.10) 

0.29 
(0.10) 

4 4 16 320 WGS 
(16*20) 

0.68 
(0.10) 

0.28 
(0.10) 

Enrichment analysis (splitting low MAF and low LD 
bins into protein-altering and non-protein-altering)  

4 2(+1) 11 20 HM3 0.70 
(0.09) 

0.29 
(0.09) 

4 2(+1) 11 48 WGS 0.61 
(0.09) 

0.24 
(0.10) 

Enrichment and removing extreme diagonal samples 22100 4 2(+1) 11 20 HM3 0.79 
(0.10) 

0.26 
(0.10) 

4 2(+1) 11 48 WGS 0.73 
(0.10) 

0.21 
(0.10) 

GREML-LDMS ± Different GRM estimator: Average 
of ratios 

25465 Alg 0 4 2 8 20 HM3 0.74 
(0.10) 

0.29 
(0.11) 

4 2 8 160 WGS 0.63 
(0.10) 

NA 

GREML-LDMS ± No High quality filter on variants  All 
variants 
WGS 

Alg 1 4 2 8 20 HM3 0.62 
(0.06) 

NA 

4 2 8 160 WGS 0.62 
(0.06) 

NA 
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GREML-LDMS ± TOPMed LD/MAF reference Intersecti
on 

UK10K / 
TOPMed 

4 2 8 20 HM3 0.60 
(0.08) 

0.32 
(0.08) 

GREML-LDMS ± UK10K LD/MAF reference 4 2 8 20 HM3 0.60 
(0.06) 

0.30 
(0.07) 

GREML-LDMS ± Imputation from Axiom Imputed 
SNPs 

Rsq > 0.3 

4 2 8 20 HM3 0.56 
(0.07) 

0.21 
(0.07) 

GREML-LDMS ± Imputation from GSA 4 2 8 20 HM3 0.55 
(0.07) 

0.16 
(0.07) 

GREML-LDMS ± Imputation from Infinium 4 2 8 20 HM3 0.50 
(0.06) 

0.18 
(0.07) 

GREML-LDMS ± Imputation from Axiom -LD score 
segment for LD reference 

4 2 8 20 HM3 0.51 
(0.04) 

NA 

GREML-LDMS ± Comparison Axiom imputed ± WGS 
± Axiom genotypes 

Intersecti
on 

Axiom 
imputed / 
TOPMed 

WGS 

4 2 8 20 HM3 0.55 
(0.07) 

0.18 
(0.07) 

4 2 8 160 WGS 0.50 
(0.07) 

0.13 
(0.07) 

GREML-LDMS ± Comparison Axiom imputed ± WGS 
± TOPMed genotypes 

4 2 8 20 HM3 0.62 
(0.07) 

0.25 
(0.07) 

4 2 8 160 WGS 0.56 
(0.07) 

0.22 
(0.07) 

GREML ± MS ± UKB Exome  Intersecti
on UKB 

WES 
TOPMed 

WGS  

Alg1 2 1 2 20 HM3 0.35 
(0.02) 

0.10 
(0.02) 

GREML ± MS ± TOPMed  2 1 2 20 HM3 0.30 
(0.02) 

0.07 
(0.02) 

GREML ± LDMS ± UKB Exome  2 2 4 20 HM3 0.37 
(0.02) 

0.13 
(0.02) 

GREML ± LDMS ± TOPMed 2 2 4 20 HM3 0.31 
(0.02) 

0.09 
(0.02) 

GREML -LDMS ± No heterozygosity QC step SVM 
WGS 

28754 4 2 8 20 HM3 0.70 
(0.08) 

0.36 
(0.08) 

4 2 8 160 WGS 0.58 
(0.08) 

0.31 
(0.08) 

GREML -LDMS ± No heterozygosity QC step ± 3 LD 
bins analysis 

4 3 12 20 HM3 0.76 
(0.08) 

0.40 
(0.09) 

4 3 12 160 WGS 0.64 
(0.08) 

0.35 
(0.09) 

GREML -LDMS ± No heterozygosity QC step but 
removal of samples with diagonal values > 1.3 and < 

0.7 

25333 4 2 8 20 HM3 0.81 
(0.09) 

0.37 
(0.09) 

4 2 8 160 WGS 0.71 
(0.09) 

0.31 
(0.10) 

GREML -LDMS ± No heterozygosity QC step but 
removed pairs with off-diagonal values across all WGS 

GRMs > 0.1 

26698 4 2 8 20 HM3 0.71 
(0.08) 

0.35 
(0.09) 

4 2 8 160 WGS 0.59 
(0.09) 

0.29 
(0.09) 

24233 4 2 8 20 HM3 0.82 
(0.09) 

0.38 
(0.10) 
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GREML -LDMS ± No heterozygosity QC step but 
removed diagonals and off-diagonals extreme values 

across all GRMs  

4 2 8 160 WGS 0.71 
(0.10) 

0.31 
(0.10) 

GREML-LDMS ± Relatedness cutoff 0.025 ± (median 
based) 

SVM 
WGS 

24210 Alg1 4 2 8 48 WGS 0.64 
(0.10) 

0.23 
(0.10) 

GREML-LDMS ± Relatedness cutoff 0.025 ± (tertile 
based) 

4 3 12 48 WGS 0.72 
(0.10) 

0.31 
(0.10) 

GREML-LDMS ± Relatedness cutoff 0.025 ± (quartile 
based) 

4 4 16 48 WGS 0.72 
(0.10) 

0.29 
(0.11) 

GREML-LDMS ± WGS SNPs ± 2 LD bins (median 
based) + African ancestry covariate 

25465 4 2 8 48 WGS + % 
African 
ancestry 

0.60 
(0.09) 

0.24 
(0.10) 

GREML-LDMS ± WGS SNPs ± 3 LD bins (tertile 
based) + African ancestry covariate 

4 3 12 48 WGS + % 
African 
ancestry 

0.68 
(0.09) 

0.31 
(0.10) 

GREML-LDMS ± WGS SNPs ± 4 LD bins (quartile 
based) + African ancestry covariate 

4 4 16 48 WGS + % 
African 
ancestry 

0.68 
(0.10) 

0.30 
(0.10) 

UK 
Biobank 
Whole 
Exome 

GREML-LDMS + HM3 GRM WES + 
HM3 

35867 Alg0 7 2 14 + 1 (HM3) 20 HM3 0.62 
(0.04) 

0.33 
(0.04) 

GREML-LDMS + HM3 GRM ± fitting birth 
coordinates 

7 2 14 + 1 (HM3) 20 HM3 0.61 
(0.04) 

0.33 
(0.04) 

GREML-LDMS + HM3 GRM 7 2 14 + 1 (HM3) 280 WES (20 
per bin) 

0.59 
(0.04) 

0.31 
(0.04) 

GREML-LDMS + HM3 GRM ± fitting birth 
coordinates 

7 2 14 + 1 (HM3) 280 WES (20 
per bin) 

0.56 
(0.04) 

0.25 
(0.05) 

GREML-LDMS + HM3 GRM ± fitting sequencing 
center 

7 2 14 + 1 (HM3) 280 WES (20 
per bin) 

0.57 
(0.04) 

0.28 
(0.04) 
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Supplementary Table 8: Putative impacts and enriched GREML-LDMS analysis bin of variant effects as predicted by SnpEff 
v4.1 annotation software. 

Enriched 
GREML-
LDMS bin 

analysis 

Putative 
impact Sequence Ontology term 

Protein-
altering 
variants 

HIGH 

chromosome_number_variation 
exon_loss_variant 
frameshift_variant 

rare_amino_acid_variant 
splice_acceptor/donor_variant 

start_lost 
stop_gained/lost 

transcript_ablation 

MODERATE 

3_or_5_prime_UTR_truncation & exon_loss 
coding_sequence_variant 

conservative_inframe_insertion/deletion 
disruptive_inframe_insertion/deletion 

missense_variant 
regulatory_region_ablation 

splice_region_variant 
TFBS_ablation 

Non-protein-
altering 
variants 

LOW 

5_prime_UTR_premature_start_codon_gain_variant 
initiator_codon_variant 
splice_region_variant 

start/stop_retained_variant 
synonymous_variant 

MODIFIER 

3_or_5_prime_UTR_variant 
coding_sequence_variant 

conserved_intergenic_variant 
conserved_intron_variant 
downstream_gene_variant 

exon_variant 
feature_elongation/truncation 

gene_variant 
intragenic/intergenic_region 

intron_variant 
mature_miRNA_variant 

miRNA 
NMD_transcript_variant 

non_coding_transcript_exon_variant 
non_coding_transcript_variant 

regulatory_region_amplification 
regulatory_region_variant 
TF_binding_site_variant 

TFBS_amplification 
transcript_amplification 

transcript_variant 
upstream_gene_variant 
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Supplementary Figure 1: Principal Component Analysis plot of individuals compared to 1000 Genomes populations. (A) PCA 
of TOPMed samples and 1000G populations using 580k common SNPs. (B) PCA of TOPMed samples and 1000G populations 
using ~1.3M rare SNPs. 
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Supplementary Figure 2: Proportion of ancestry according to RFMix reference before and after filtering samples further 
away from 3 standard deviations of each reference population. (A) Before filtering samples (N=36,938 ). (B) After filtering 
samples (N=34,038). 
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Supplementary Figure 3: Quality control and analysis pipeline for TOPMed WGS data to estimate trait variance. 

 
 

Variance estimation
ͻ Fitting one or multiple GRMs
ͻ Fitting corresponding PCs as fixed 

effects

Computing GRMs and PCs
ͻUsing diferent set of SNPs and grouping 

strategies
ͻPCs computed from LD-Pruned SNPs

Cryptic population stratification 
QC
ͻN=25,465
ͻ m=33.7M variants

Pruning related pairs
ͻN=28,755 unrelated samples from 

common SNPs

Selecting Europeans from PCA 
and global ancestry inference 
ͻN=34,038 samples of European ancestry

Filtering out data
ͻN=66,790 samples left from the original 

140,306 sequenced Selecting samples with both genotypes and phenotypes available
Removing samples < 18 years old or with low sequencing depth rate

SNP matching with 1000G pop reference for rare and common (PC projection) -
filtering based on weighted euclidean distance for first 4 PCs

Samples within 3 SD of main populations (EUR, AFR, EAS, AMR)

Removed pairs from HM3 SNPs, relatedness cutoff of 0.05

Computed MAF and LD bins and removed samples with extreme heterozygosity 
for each bin

Selected high quality variants and performed genotypes QC
Standardized phenotypes across age, sex and cohorts using final samples

Using HM3 SNPs

GREML-SC

Using WGS SNPs MAF 
stratified

GREML-MS

Using WGS SNPs MAF/LD 
stratified

GREML-LDMS
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Supplementary Figure 4: Distribution of sample heterozygosity for each MAF and LD grouping. (A) Distribution before 
filtering (N=28,755). (B) Distribution after 4 rounds of filtering out samples further away than 3 standard deviations for 
each distribution mean (N=25,465). 

 
 

 
Supplementary Figure 5: Distribution of N=25,465 phenotypes (unrelated Europeans) in the dataset before and after the QC 
process. (A) Distribution of height before standardization. (B) Distribution of BMI before standardization. (C) Distribution of 
age in the dataset with indivuduals < 18 years old removed. (D) Distribution of the residuals for height after QC 
standardization. (E) Distribution of the residuals for BMI after QC standardization. (F) Distribution of the residuals for BMI 
with a rank inverse normal transformation after QC standardization. The skewness in distribution of the BMI is removed by 
the transformation. 
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Supplementary Figure 6: GREML-LDMS estimates using WGS (~33.7M variants, N=25,465) with a rank inverse normal 
transformation (RINT) correcting by 48 PCs. (A) Estimates for heightRINT ~0.63 (SE 0.09) are consistent with untransformed 
trait. (B) Total estimates for BMIRINT are lower than BMI ~0.20 ( 0.10). 
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Supplementary Figure 7: PGS in n=25,465 samples from 1360 and 449 independent SNPS associated with height and BMI 
respectively in the UKB matching TOPMed dataset. (A). Fitted regression slopes for samples in each 18 cohorts. (B-C). 
Estimates of the individual slopes (x-axis) and the proportion of phenotypic variance explained (numbers displayed) for each 
TOPMed cohort, error bars represent the SE associated to the ß estimate (slope). 
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Supplementary Figure 8: Number of SNPs in each MAF bin after imputation and QC process, for each of the Illumina 
InfiniumCore24, GSA-24 and Affymetrix Axiom arrays. Total number of SNPs is between ~19.0 and ~20.0 M SNPs. 

 
 

 
Supplementary Figure 9: Estimates of SNP-based heritability (hSNP2) from a GREML-LDMS analysis based on 8 bins (4 MAF * 
2 LD bins, N=25,465) for SNPs imputed on Axiom array (~20.4M SNPs), corrected for 20 HM3 SNPs PCs. LD stratification was 
done using either on segment-based LD value or individual-SNP LD value. Estimates went from hSNP2 ~0.51 (SE 0.04) using a 
segment-based LD value stratification to hSNP2 ~0.56 (SE 0.07) using an individual-SNP LD value stratification. 
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Supplementary Figure 10: GREML-LDMS estimates stratified in 14 MAF and LD bins, using subset of SNPs in common 
between TOPMed dataset and imputed dataset from Axiom array SNPs (~17.9M SNPs in common, N=25,465) and 
correcting by either 20 PCs computed from HM3 independent SNPs or 160 PCs from each MAF/LD bin. Estimates are 
consistently higher for the TOPMed dataset, with most of the difference coming from the variants in the 0.0001 to 0.001 
MAF range in low LD. This difference could be due to imputation errors as common variant bins seems consistent between 
the two datasets. 
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Supplementary Figure 11: (A) LD score value across the genome for a subset of 350k protein-altering and non-protein-
altering variants. LD value were calculated within each of the 4 MAF bin, LD values > 3000 are not shown (B) Boxplot of the 
distribution of individual SNPs LD values within each bin, N=33.7M. Lower and upper hinges correspond to the first and third 
quartiles and whiskers extend to +/- 1.5 * inter-quartile range. (C) Number of SNPs for each of the four MAF bin. (D) 
Fraction of the high impacting variants as a percentage of the total number of variants in the bin. 

 
 
 
 

 
Supplementary Figure 12: GREML-LDMS estimates from WGS data (~33.7M variants, N=25,465) stratified in 8 bins (4 MAF 
bins in 2 LD bins) with correction for 20 PCs (on HM3 SNPs), 48 PCs reflecting population stratification (Supplementary 
Figure 23) or 160 PCs (20 * 8 bins). (A) Estimates for height with ݄ௐீௌ

ଶ  at ~0.60 - ~0.70 (SE ~0.09). (B) Estimates for BMI 
with hWGS2 at ~0.25 - ~0.29 (SE 0.09 ʹ 0.10). The number of variants in each of the 4 MAF bins (twice the number in each 
LD bin) is, from the lowest to highest MAF bins, 19.3M, 5.3M, 3.9M and 4.9M, respectively (Supplementary Table 5 and 
Supplementary Figure 11). 
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Supplementary Figure 13: Estimate of the cumulative contribution of variants, for height and BMI, from GREML-LDMS 
analysis (N=25,465). The dotted line represents the expected contribution under a neutral evolutionary model. The 
deviation from this dotted line suggest that height and BMI are under negative selection. For each trait, a linear model has 
been fitted to better visualise the trait selection. The first bin represents variants with MAF < 0.01 (cumulative contribution 
to genetic variance for height and BMI of 0.30 (SE 0.10) and 0.29 (SE 0.25), respectively) when second bin shows all variants 
with MAF < 0.1 (cumulative contribution to genetic of 0.47 (SE0.08) for height and 0.30 (SE 0.24) for BMI). The third MAF 
bin includes all variants in the dataset. 
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Supplementary Figure 14: Adjusted R2 of a linear model regressing the phenotype against 20 PCs from LD-pruned HM3 SNPs 
and 48 (calculated from 8 MAF/LD bins of LD-pruned SNPs) or 160 (calculated from 4 MAF bins * 2 LD bins, on independent 
SNPs) PCs calculated from TOPMed WGS dataset.  
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Supplementary Figure 15: GREML-LDMS estimates fitting 14 bins from UKB Exome data and one bin of HM3 imputed 
common SNPs. Estimates fitting either 20 PCs calculated from HM3 SNPs or 20 PCs and the north and east birth coordinates 
scaled on a 0,1 range. Estimates are of ~0.61-0.62 (SE 0.04) for height and heightRINT, 0.33 (SE 0.04) for BMI and 0.36 (SE 
0.04) for BMIRINT. 
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Supplementary Figure 16: GREML estimates using exome SNPs present in both TOPMed and UKB Exome dataset. Only 2 
MAF groupings are fitted in this mode with rare (0.0001 < MAF < 0.01) or common (0.1 < MAF < 0.5) variants. The sample 
size of UKB Exome dataset ǁĂƐ�ĚŽǁŶƐĂŵƉůĞĚ�ƚŽ�ŵĂƚĐŚ�dKWDĞĚ͛Ɛ�ƐĂŵƉĞ�ƐŝǌĞ�;N=25,465 unrelated european individuals). 
Rare variants not following a normal distirbution were removed (Online Methods). We further investigated the effect of LD 
stratification with the same set of variants in (C) and (D). For TOPMed and UKB Exome respectively. (A) Total estimates for 
height of 0.30 (SE 0.02) and 0.35 (SE 0.02). (B) Estimates for BMI of 0.07 (SE 0.02) and 0.10 (SE 0.02) for BMI. (C) GREML-
LDMS estimates for height 0.31 (SE 0.02) and 0.37 (SE 0.02). (D) Estimates for BMI of 0.09 (SE 0.02) and 0.13 (SE 0.02). 
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Supplementary Figure 17: Geographical distribution of UKB samples used to simulate a sharp environmental effect 
associated with their birth coordinates. To simulate a sharp environmental effect, we selected samples either from the 
Rotherham region or based on regional coordinates defined by rare variants PC stratification (Supplementary Figure 24 A). 
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Supplementary Figure 18: Distribution of the mean standardized phenotype (sex and age adjusted) per administrative 
region/cohort in the UKB and TOPMed samples and their contribution to phenotypic variance, which was defined as f(1-
f)E2, where f is the proportion of the total sample for a region/cohort, and E the estimated mean phenotype. (A) 
Phenotypes distribution for the N=35,867 UKB WES samples for each of the 378 administrative regions. Also shown are the 
Rotherham and North samples after adding an environmental effect of 0.5, 1 and 2 sd to the mean height cohort value. (B) 
Mean phenotype per administrative region for the Europeans within the full UKB data (N=424,700) (C) Distribution of the 
mean height and BMI per TOPMed cohort, after correcting for sex and age. These phenotypes have also been standardized 
by cohort for the REML analysis. Note that the y-axis is on a log scale. 
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Supplementary Figure 19: Variance components when simulating a phenotype ݄ௌ௨

ଶ ൌ ͲǤͲ from 10,000 causal variants, 
either from common variants, rare variants, or a mixture of both (5,000 variants from each bin) over 10 iterations with 
N=35,867. Estimates without any environmental effect in the left panel, and with an effect of 2 standard deviations in the 
right panel, on 971 samples selected at random in the dataset. We fitted either 0 PCs, or 20/100/500 from each of the 2 
sets of variants (after LD pruning). V(G1) corresponds to variants with MAC 3 < MAF < 0.01, when V(G2) is 0.01 < MAF < 0.5. 
The contribution from each GRM to genetic variance is as expected (dotted line) when adding a large environmental effect 
at random or no effect at all.  
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Supplementary Figure 20: Variance components when simulating a phenotype ݄ௌ௨

ଶ ൌ ͲǤͲ from 10,000 causal variants, 
either from common variants, rare variants, or a mixture of both (5,000 variants from each bin) over 10 iterations with 
N=35,867. Estimates with a 2 standard deviations effect added on 971 samples from the Rotherham administrative region 
in the UKB in the left panel, and after a RINT transformation of the phenotype in the right panel. We fitted either 0 PCs, or 
20/100/500 from each of the 2 sets of variants (after LD pruning). The variance contribution from the rare variants bin is 
inflated, especially with a phenotype simulated from common variants (by ~0.10). A RINT transformation or a large number 
of PCs fitted can only partially correct for this inflation. 
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Supplementary Figure 21: Variance components for phenotypes with a 2sd effect added on the North samples 
(Supplementary Figure 24) in the left panel, and the phenotype after a RINT transformation in the right panel (N=35,867). 
As in Supplementary Figure 20, the variance contribution from rare variants is inflated. A RINT transformation partially 
corrects this inflation and fitting 100 PCs per bin fully captures the environmental effect. 
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Supplementary Figure 22: Variance components for a sharp environmental effect of 2, 1 or 0.5 standard deviations added 
the samples from the Rotherham administrative region. Phenotype was generated from different sets of causal variants, 
and either 20 or 100 PCs from LD pruned MAF bin were fitted (N=35,867). The magnitude of the bias induced by this effect 
is proportional to the effect added. Estimates corresponding to a sharp environmental effect of 0.5 standard deviations are 
similar to the expected estimates without inflation from rare variants. 
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Supplementary Figure 23: Adjusted R2 from fitting 150 PCs computed from LD-pruned SNPs for different MAF and LD bins on 
odd and even chromosomes GRMs. The mean R2 from fitting a PC from one set on all the other set PCs is shown. As we do 
not expect Inter-chromosomal correlations under random mating, observing a R2> 0 between sets of chromosomes most 
likely show some population stratification. (A) Mean R2 for the N=35,867 UKB Exome samples. (B) Mean R2for the N=25,465 
TOPMed samples. Vertical lines show the threshold determining the best number of PCs to fit to account for population 
stratification. The thresholds for each MAF/LD bin was computed from a segmented regression model. From this analysis, 
the number of PCs to fit for each bin to correct for population stratification is respectively 15, 7, 6, 5, 5, 5, 5, 0 for a total of 
48 PCs. 
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Supplementary Figure 24: Product of ܲܥୀଵǡଵ ൌ ைௗௗܥܲ כ ா௩ܥܲ . for each PC for each sample, further transformed by 
centering and applying a RINT transformation to smoothen the effect of outliers. For each individual (N=35,867), this 
product of odd-even chromosomes PCs was plotted according to their East and North birth coordinates.(A) PC5 on rare 
variants (0.0001 < MAF < 0.001) in low LD. (B) PC100 on rare variants (low LD). (C) PC5 on common variants (0.4 < 
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MAF<0.5) . (D) PC100 on common variants. We can see a larger stratification for (A) potentially indicating a north-south 
stratification. 

 

 
Supplementary Figure 25: Moran's I auto-correlation index calculated of UKB-WES samples (N=35,867). This index was 
calculated across all the samples for each of the first 50s on 3 rare MAF bins and one common MAF bin partitioned 
according to SNP-based LD. The product of ܲܥୀଵǡହ ൌ ைௗௗܥܲ כ ா௩ܥܲ  ǁĂƐ�ƵƐĞĚ�ƚŽ�ĐŽŵƉƵƚĞ�DŽƌĂŶ͛Ɛ�/�ŝŶĚĞǆ͘�tĞ�ĐĂŶ�
observe a larger spatial correlation for the first PCs of the rare variants bins. 
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Supplementary Figure 26: GRM diagonals comparison between GRM computed from the high quality variants (SVM) or all 
genotyped variants. GRMs were computed using the ratio of average method. There are N=25,465 TOPMed samples per 
bin. 
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Supplementary Figure 27: GRM off-diagonals comparison between GRM computed from the high quality variants (SVM) or 
all genotyped variants from N=25,465 samples. GRM were computed using the ratio of average method. Only the largest 
20,000 differences are shown for each bin with a minimum threshold of 1%. Common variants bins (0.1 < MAF < 0.5) did not 
show differences between the two methods larger than 1%. 
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Supplementary Figure 28: Difference in diagonal elements for the ratio of averages and average of ratios GRM estimators. 
Diagonal for each MAF/LD bins are plotted using N=28,755 unrelated samples of European ancestry. 
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Supplementary Figure 29: Impact of the GRM estimator on off-diagonal elements using N=28,755 unrelated samples of 
European ancestry, only pairs with a relatedness difference larger than 2% are shown. Total number of diverging pairs is 
indicated within each window. The total number of pairs in the GRM ~413M. Low LD bins and common ones (0.1 < MAF < 
0.5) did not present any difference larger than 2%. 
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Supplementary Figure 30: GREML-LDMS using WGS (~33.7M variants, N=25,465) estimates using either the average over 
loci of ratios (blue) or the ratio over averages of loci (red) methods to calculate the GRM values. (A) Estimates for height 
fitting 8 bins: 0.70 - 0.74 (SE 0.09 - 0.10) fitting 20 HM3 PCs and 0.61 ʹ 0.63 (SE 0.09 ʹ 0.10) fitting 48 PCs. (B) Estimates for 
BMI fitting 8 bins: 0.29 - 0.29 (SE 0.09 - 0.11) fitting 20 HM3 PCs and 0.25 ʹ 0.31 (SE 0.10 ʹ 0.11) fitting 48 PCs. 
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Supplementary Figure 31: Distribution of diagonals elements for each MAF/LD GRM before and after filtering on sample bin 
heterozygosity (from N=28,755 (top) to N=25,465 (bottom) samples) Lower and upper boxplot hinges correspond to the first 
and third quartiles and whiskers extend to +/- 1.5 * inter-quartile range. 
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Supplementary Figure 32: Distribution of off-diagonals elements for each MAF/LD GRM before and after filtering on sample 
bin heterozygosity (from N=28,755 (top) to N=25,465 (bottom) samples). Lower and upper boxplot hinges correspond to the 
first and third quartiles and whiskers extend to +/- 1.5 * inter-quartile range. 
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Supplementary Figure 33: GREML-LDMS estimates by removing samples from the full GRM of Europeans (before QC on 
sample heterozygosity, N=28,755). Samples were removed either based on their off-diagonal values (>0.1) across all GRMs 
(all residual relatedness coming from the rare variants GRMs) or their diagonal values (< 0.7 or > 1.3) or both (removing 
samples based on the diagonals first then off-diagonals). (A) GREML-LDMS estimates for height fitting either 20 HM3 PCs or 
160 PCs computed from all WGS bins. Estimates without any filtering 0.58 ʹ 0.70 (SE 0.08), estimates when filtering on off-
diagonals 0.59 ʹ 0.71 (SE 0.08 ʹ 0.09), estimates when filtering on diagonals 0.71 ʹ 0.81 (SE 0.09), estimates when filtering 
on both 0.71 ʹ 0.82 (SE 0.09 ʹ 0.10). (B) GREML-LDMS estimates for BMI without filtering 0.31 ʹ 0.36 (SE 0.08), estimates 
when filtering on off-diagonals 0.29 ʹ 0.35 (SE 0.09), estimates when filtering on diagonals 0.31 ʹ 0.37 (SE 0.09 ʹ 0.10), 
estimates when filtering on both 0.31 ʹ 0.38 (SE 0.10). 
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Supplementary Figure 34: GREML-LDMS estimates from variants in common (~20.0M variants, N=25,465) between 
TOPMed and UK10K datasets stratified in 8 bins according to variants MAF and LD properties using either TOPMed or 
UK10K LD and MAF reference, corrected for 160 PCs from WGS independent variants. (A) Estimates of ݄ௐீௌ

ଶ  for height 
(~0.54 ʹ 0.55 (SE 0.07 ʹ 0.08)) or (B) BMI (~0.27 (SE 0.07 ʹ 0.08)) are similar and independent of the LD and MAF reference. 
The number of variants in each of the 7 MAF bins (twice the number in each LD bin) is, from the lowest to highest MAF bins, 
9.1.M, 4.5M, 3.3M and 3.1M, respectively. 
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Supplementary Figure 35: Distribution of SNP LD score for each MAF/LD bin for N=25,465 samples. For more clarity, boxplot 
outliers are not shown here. Most of the extreme outliers are from rare SNPs in very high LD bins. Lower and upper hinges 
correspond to the first and third quartiles and whiskers extend to +/- 1.5 * inter-quartile range. 
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Supplementary Figure 36: Summary of the impact of different LD grouping strategies on total heritability estimates for 
N=25,465 samples using 2, 3 or 4 LD grouping for each MAF bin correcting by 48/160/320 PCs computed from WGS 
independent SNPs. Estimates for height 0.60 ʹ 0.68 (SE 0.09 ʹ 0.10), estimates for BMI 0.23 ʹ 0.32 (SE 0.10). 
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Supplementary Figure 37: AIC fitting different models, with either 2, 3 or 4 LD bins and 40, 160 or 320 PCs for height (A) and 
BMI (B), using N=25,465 samples. The lower AIC indicates a better fitting model. 
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Supplementary Figure 38: Information on IBD segments distribution among N=28,755 unrelated Europeans. (A) Mean 
segment length per chromosome and length SD. (B) Number of segments and mean number of variants per segment. (C) 
Distribution (log10 scale) of the length of IBD segments per chromosome. (D) Distribution of the number of segments per 
unique sample pair sharing a segment IBD (log10 scale). 
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Supplementary Figure 39: Investigation on the relationship between genome-wide length shared IBD and GRM off-diagonal 
elements computed from N=28,755 for variants 0.0001 < MAF < 0.001 in high LD. (A) Each sample pair is coloured by their 
bin specific mean individual heterozygosity rate. (B) Similar to (A), but showing only pairs with low relatedness value. (C) 
Each sample pair is coloured by the number segments shared IBD. 
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Supplementary Figure 40: Variant density for a pair of samples showing extreme relatedness in the off-diagonal of the GRM 
from variants of 0.0001 < MAF < 0.001 in high LD. Common variants (0.1 < MAF < 0.5) distribution on chromosome 12 (left 
panel) filtering out pair-specific heterozygotes variants. Rare variants distribution (right panel) with a MAC 2 threshold for 
the pair considered. Note that over 99% of shared heterozygotes rare variants were located on chromosome 12. The lack of 
oppositive homozygotes variants in common SNPs, at the same location of the pair specific rare heterozygotes variants 
suggests a region shared IBD. 
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Supplementary Figure 41: Investigating the characteristics of extreme GRM pairs of N=28,755 samples. (A) Top 100 pairs 
with either the largest proportion of genome shared IBD (green), the largest off-diagonal values for rare variants in high LD 
(blue) or 100 pairs selected near the median (red). Most of the high off-diagonal values do not present large segments 
shared IBD. (B) Ancestry proportion of samples within each group. The highly related samples show an increase of genome-
wide African ancestry compared to the two other groups. Lower and upper boxplot hinges correspond to the first and third 
quartiles and whiskers extend to +/- 1.5 * inter-quartile range. (C) Origin of the pair-specific heterozygotes variants 
considering only the very rare variants in high LD, either coming from the segments shared IBD by each pair or coming from 
the shared SNPs genome-wide. Embedded plot shows the control pairs only. 
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Supplementary Figure 42: Ratio of GRM diagonal elements variance over GRM off-diagonal elements variance, for each 
MAF and LD bin using N=25,465 unrelated Europeans samples. GRMs were computed using the ratio of average method. 
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Supplementary Figure 43: Proportion ancestry and diagonal values for each MAF/LD GRM using N=28,755 unrelated 
Europeans. GRMs were computed using the ratio of averages method (Van Raden GRM estimator). (A) For GRMs from low 
LD variants. (B) For GRMs from high LD variants.  
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